

Mathematical Epidemiology

Maria A. Gutierrez

15th September, BioSoc (Cambridge University Biological Society)

Outline

Questions are very welcomed at any point.

Chapters:

1. Mathematical background
2. Intro to epidemic models
3. More epidemic models
4. Bonus section

1. Mathematical Background

What is differentiation?

- Mathematical way of determining **how quickly a function changes** as the independent variable (here it will be **time**) **changes**
- Often process can be phrased in terms of how quickly things change
- Allows us to **find equilibrium** (/stationary) **points** of functions

$$\frac{dy(t)}{dt} = \dot{y}(t) = \lim_{\delta t \rightarrow 0} \left(\frac{y(t+\delta t) - y(t)}{\delta t} \right)$$

Egs, velocity = derivative of the spatial position,
acceleration = derivative of velocity

The sign of a derivative

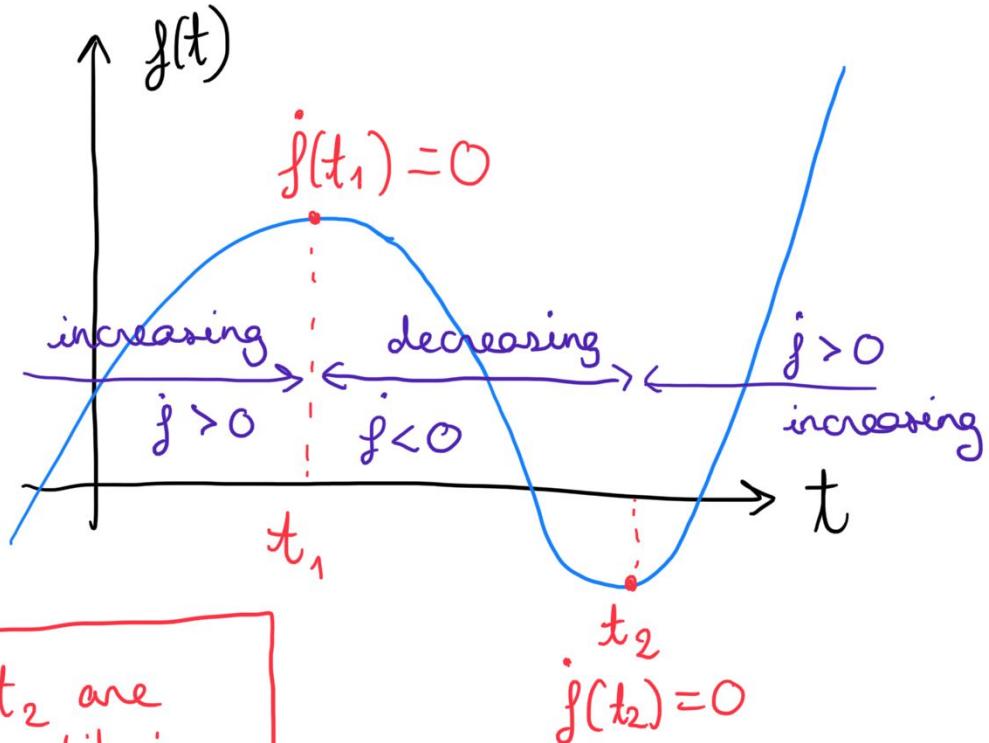
$\dot{f} > 0$: increasing

$\dot{f} = 0$: equilibrium

$\dot{f} < 0$: decreasing

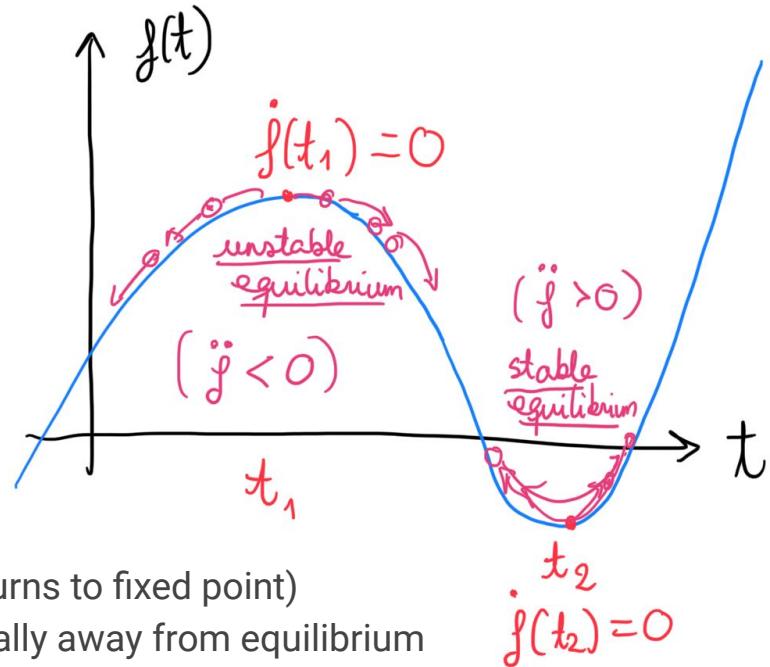
Equilibrium points = fixed points
System doesn't change

t_1, t_2 are equilibrium points



Stability Analysis

- If function tends to a **constant value**, that value must be a **fixed point**
- Usually fixed points control **long-term Behaviour**
- Fixed points can be:
 - **Stable**: small perturbations decay (system returns to fixed point)
 - **Unstable**: small perturbations grow exponentially away from equilibrium
- **Stability determined by** looking at second derivative or directly to the behaviour of a **small perturbation**



Differential Equations

Equation relating an (unknown) **function** to its derivatives

$$0 = F(t, Y(t), \dot{Y}(t), \ddot{Y}(t), \dots)$$

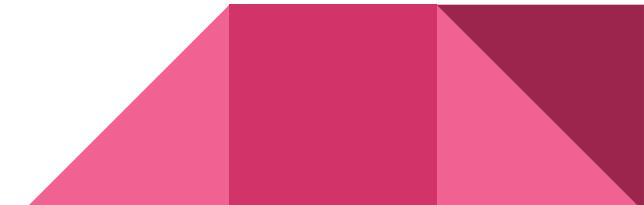
Here we want to **solve for the function Y**

(in normal equations we solve for the independent variable 'x' or 't')

Examples: $\dot{Y} = \beta Y \Rightarrow Y(t) = A e^{\beta t}$

$$m \ddot{x}(t) = -\beta \dot{x}(t) - kx(t)$$

$$\ddot{y} + \dot{y} = \cos \omega t$$



System of Differential Equations

Systems of equations:
(solve for x, y numbers)

$$x + y = 2$$

$$x - 2y = 1$$

$$xy = 1$$

$$x + y^2 = 4$$

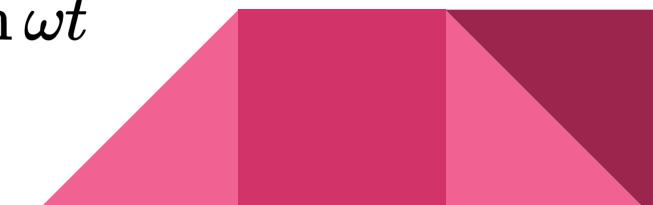
Systems of differential equations
(solve for $x(t)$, $y(t)$ functions)

$$\dot{y} = x + y$$

$$\dot{x} = x - y$$

$$\dot{y} = xy^2$$

$$\dot{x} = y + \sin \omega t$$



2. Intro to Epidemic Models

Basic Reproduction Ratio

Expected number of secondary cases generated per primary case in a largely susceptible population.

$$R_0 = \frac{\beta N}{\gamma}$$

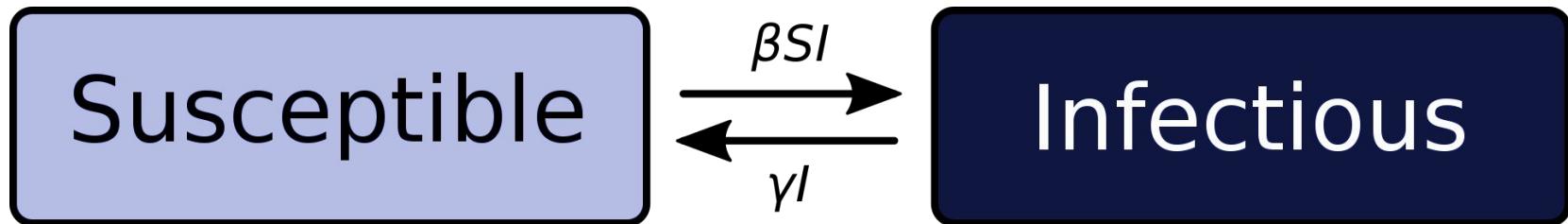
Diagram illustrating the components of the Basic Reproduction Ratio:

- β (Transmission rate) is indicated by an arrow pointing to the numerator.
- N (Total population size) is indicated by an arrow pointing to the denominator.
- γ (Recovery rate) is indicated by an arrow pointing to the denominator.

Some Estimated Basic Reproductive Ratios.

<i>Infectious Disease</i>	<i>Host</i>	<i>Estimated R_0</i>
FIV	Domestic Cats	1.1–1.5
Rabies	Dogs (Kenya)	2.44
Phocine Distemper	Seals	2–3
Tuberculosis	Cattle	2.6
Influenza	Humans	3–4
Foot-and-Mouth Disease	Livestock farms (UK)	3.5–4.5
Smallpox	Humans	3.5–6
Rubella	Humans (UK)	6–7
Chickenpox	Humans (UK)	10–12
Measles	Humans (UK)	16–18
Whooping Cough	Humans (UK)	16–18

SIS model



Individuals do **not gain immunity** to the infection after surviving it.

Common model for **flus**, and most **STIs**.

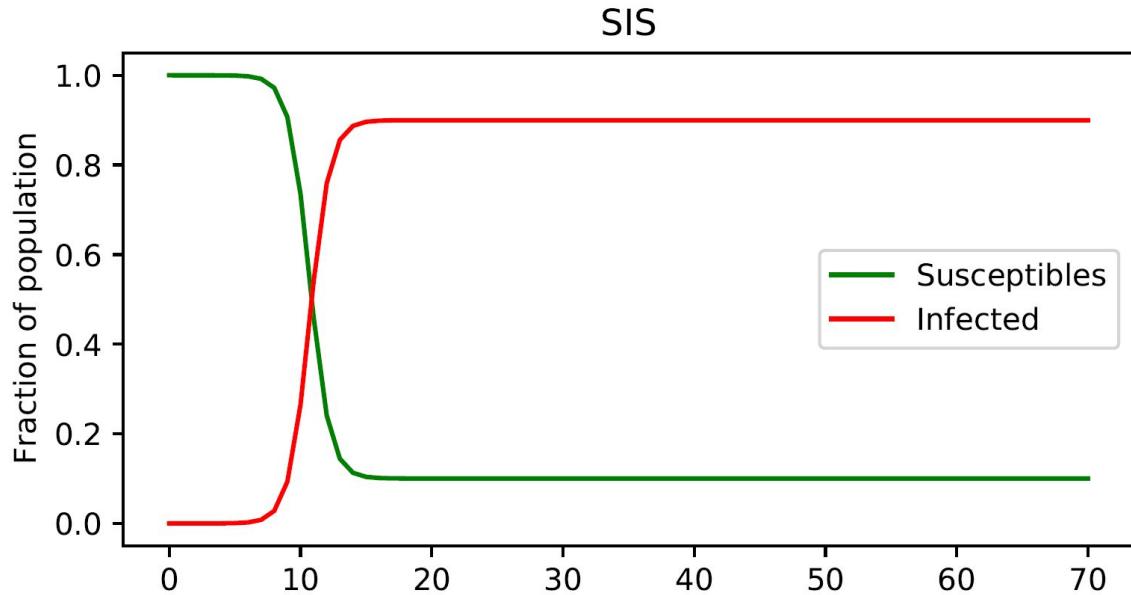
$$\dot{S} = -\beta SI + \gamma I$$

$$\dot{I} = +\beta SI - \gamma I$$

$$S + I = N$$

Exact solution to SIS

$$\dot{I} = +\beta I(N - I) - \gamma I = I(\gamma[R_0 - 1] - \beta I)$$



$$I(t) = \frac{\gamma(R_0 - 1)}{A \exp [-\gamma(R_0 - 1)t] + \beta}$$

SIR model

$$\begin{aligned}\dot{S} &= -\beta IS \\ \dot{I} &= +\beta IS - \gamma I \\ \dot{R} &= +\gamma I\end{aligned}$$

Individuals either:

- **recover** -> **immunity**
- **die**

(both go into the recovered compartment)

$$S + I + R = N \text{ (fixed)}$$

Stability analysis

Disease-Free Equilibrium $S^* = N, I^* = 0, R^* = 0$

Small perturbation away from the equilibrium: $S(0) \approx N$

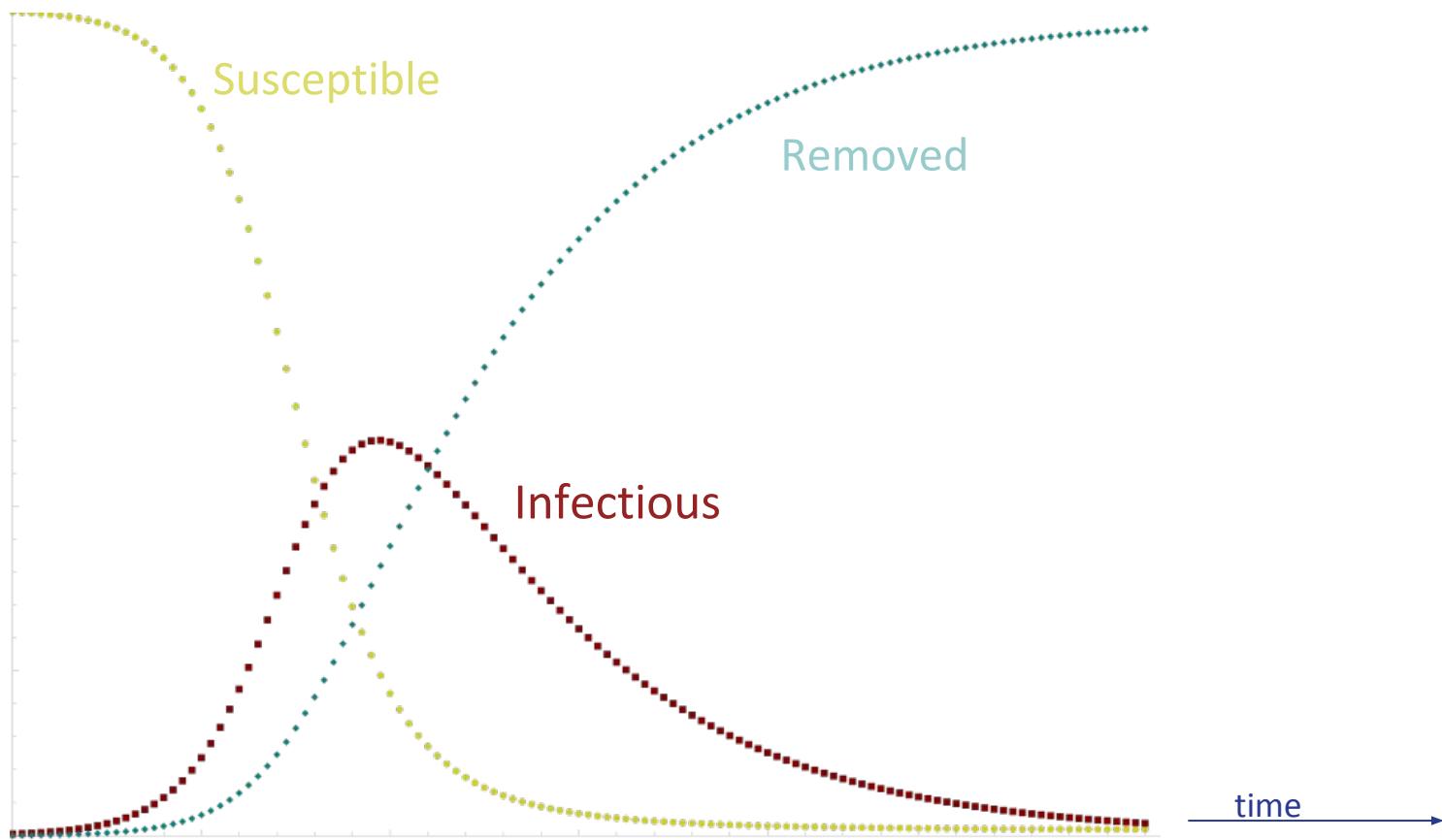
At the early stages of an epidemic:

$$\dot{I}(t) \approx (\beta N - \gamma)I(t) = \gamma(R_0 - 1)I(t)$$

$R_0 < 1 \Rightarrow \dot{I}(0) < 0 \Rightarrow$ cases decrease

$R_0 > 1 \Rightarrow \dot{I}(0) > 0 \Rightarrow$ cases increase

The epidemic “curve” (for $R_0 > 1$)



Vaccination (a simple model)

p : proportion of the population that is vaccinated

Modify the standard equations for SIR:

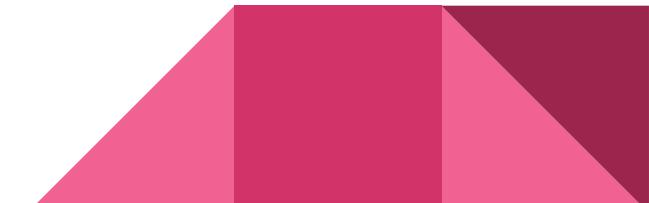
Condition for **no epidemic**:

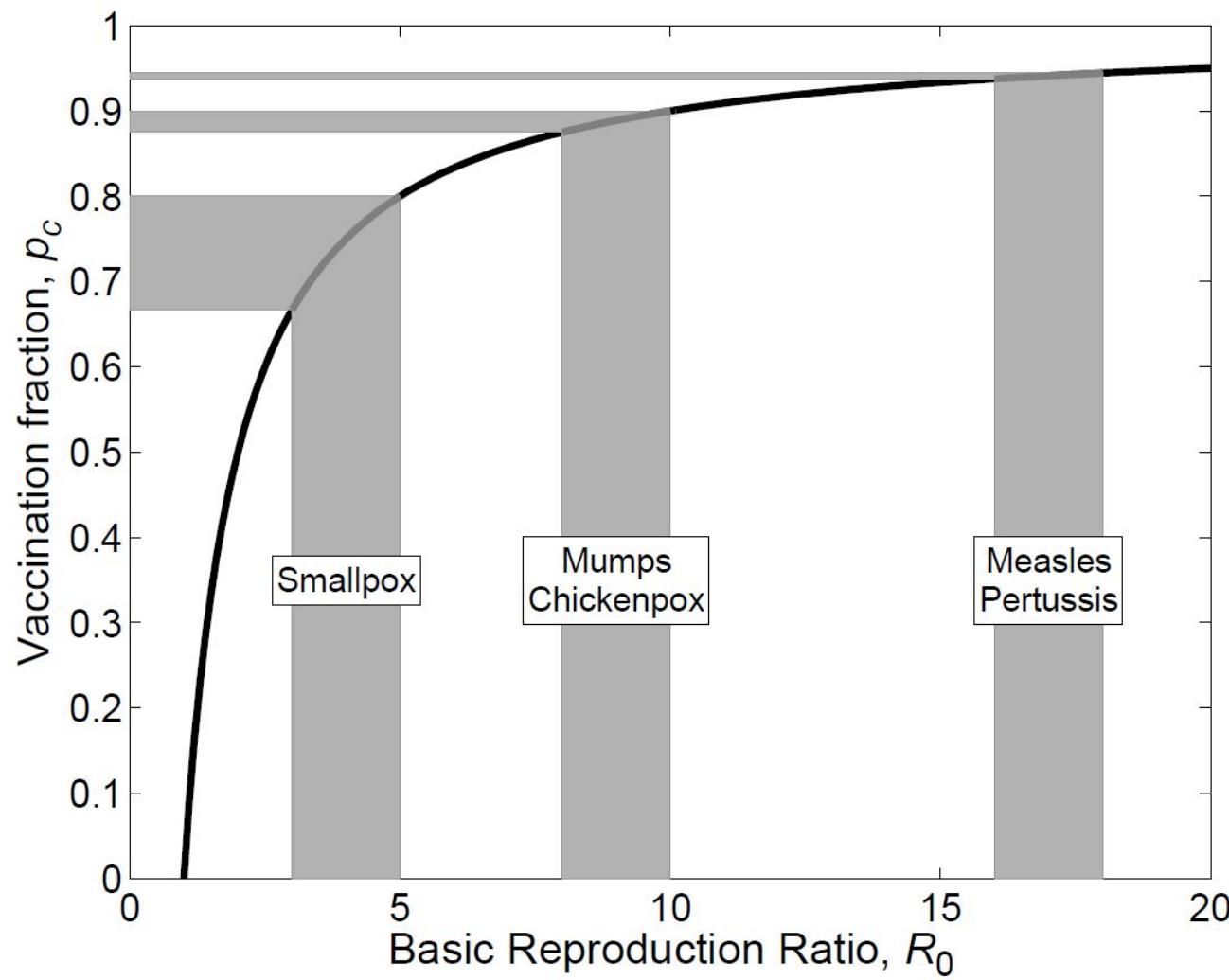
No vaccination | vaccination

$$\beta N < \gamma \quad \rightarrow \quad \beta(1 - p)N < \gamma$$

$$\begin{aligned}\dot{S} &= -\beta(1 - p)SI \\ \dot{I} &= +\beta(1 - p)SI - \gamma I \\ \dot{R} &= \gamma I \\ S + I + R &= N\end{aligned}$$

$$p > 1 - 1/R_0$$

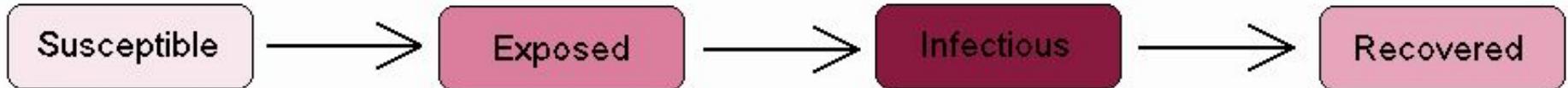




Break!

3. More Epidemic Models

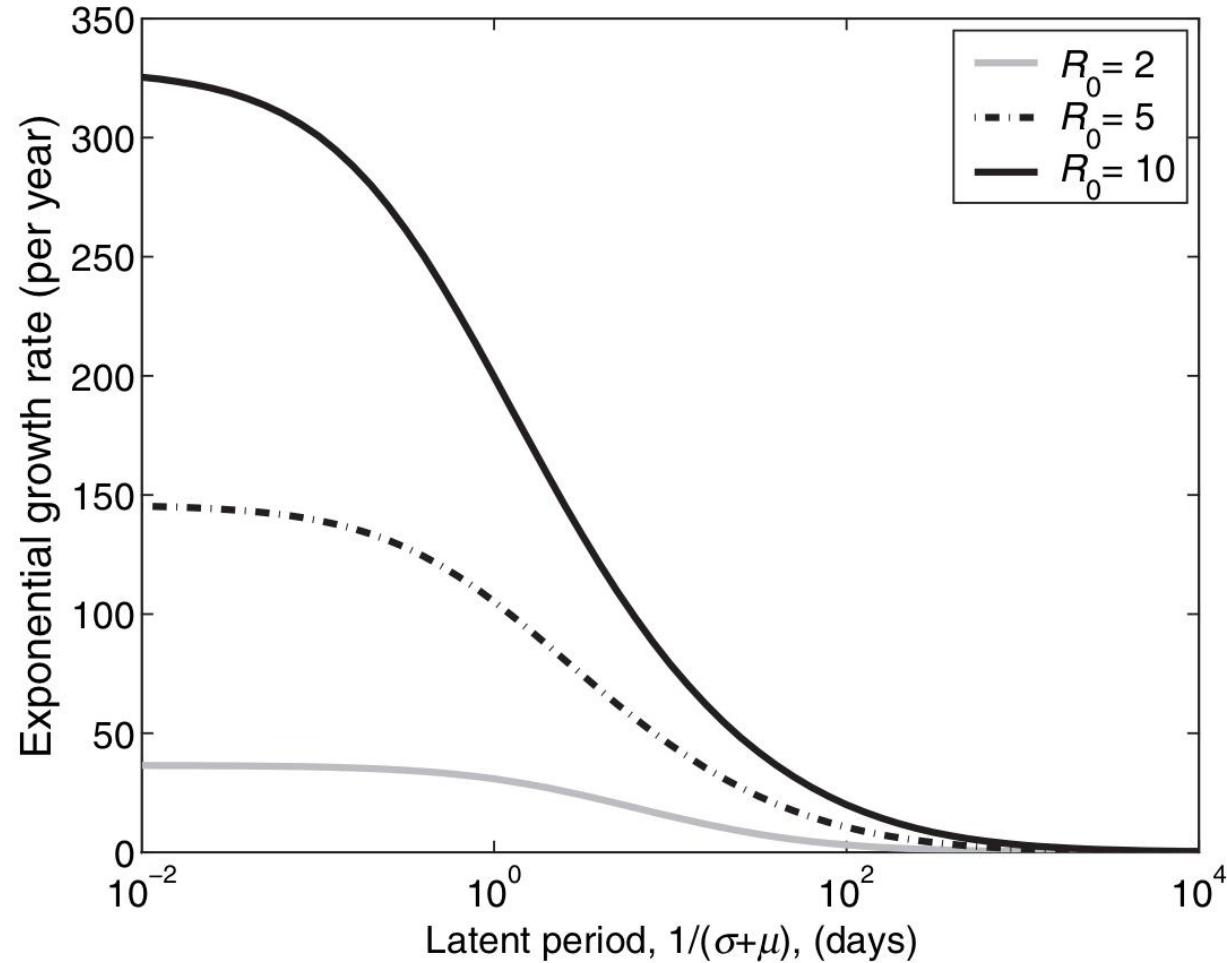
SEIR model



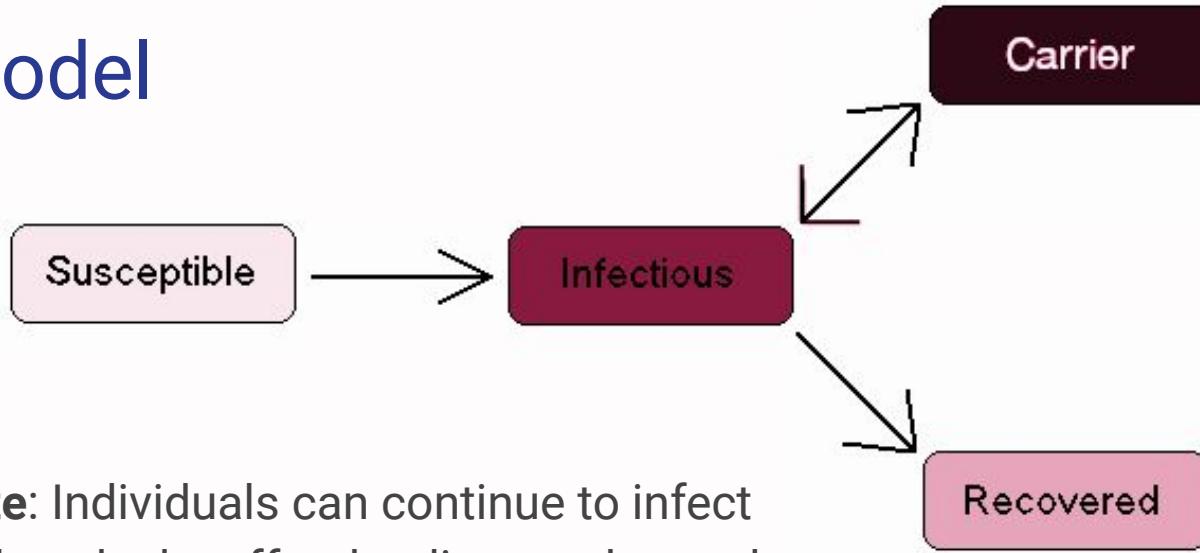
Latent period: after a very small initial inoculation (a few bacterial cells or virions), the pathogen reproduces within the host (but abundance is too low for transmission to other hosts)

-Eg, smallpox

Slower growth rate than SIR model after pathogen invasion.



SICR model

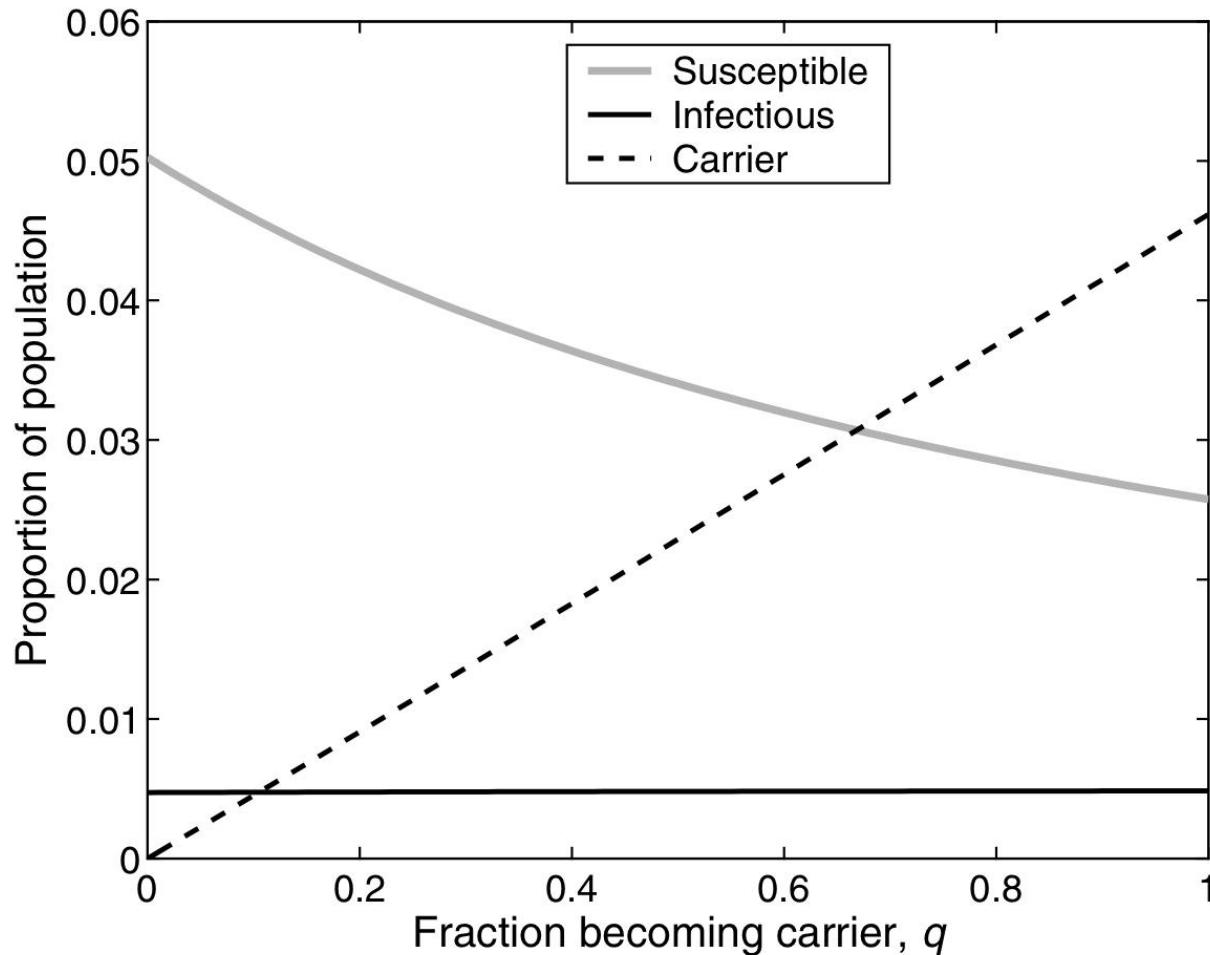


-Carrier State: Individuals can continue to infect others, but they don't suffer the disease themselves.

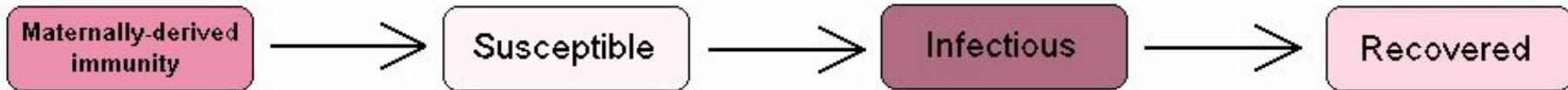
Hepatitis B, herpes.

-Could also go back to infectious compartment:

Tuberculosis, typhoid fever



More compartmental models

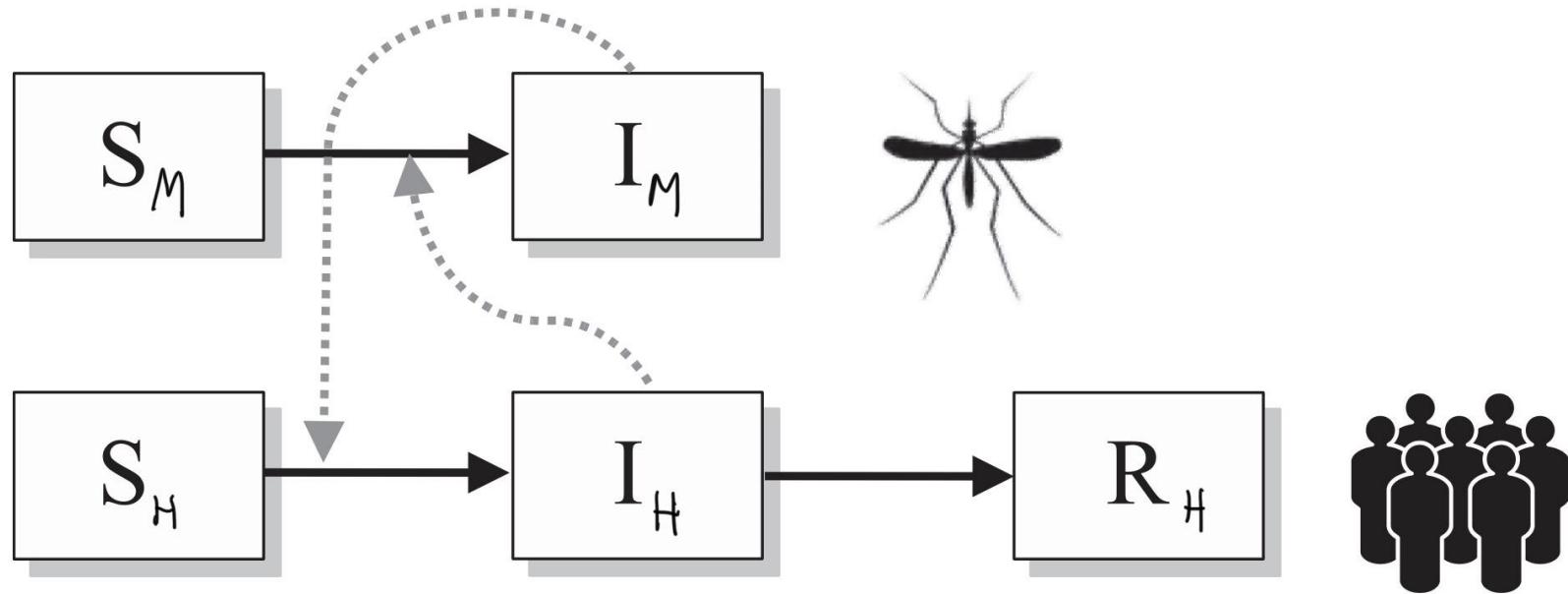


- **MSIR:** passive immunity - babies born immune for the first few months of life due to protection from maternal antibodies. (eg measles)
- **SIRS:** temporal (waning) immunity (eg mumps)
- **SI:** no recovery (eg HIV, BSE, Leishmaniasis, H5N1)

More compartments:

- “A” for asymptomatics
- “Q” for quarantined

Mosquito vectored transmission



Malaria. Dengue fever

Equations

rate at which
a particular
human is
bitten by a
mosquito

$$r = \frac{b}{N_H}$$

mosquito
bit rate

total
number of
humans

$$\dot{S}_H = -r T_{HM} I_M S_H$$

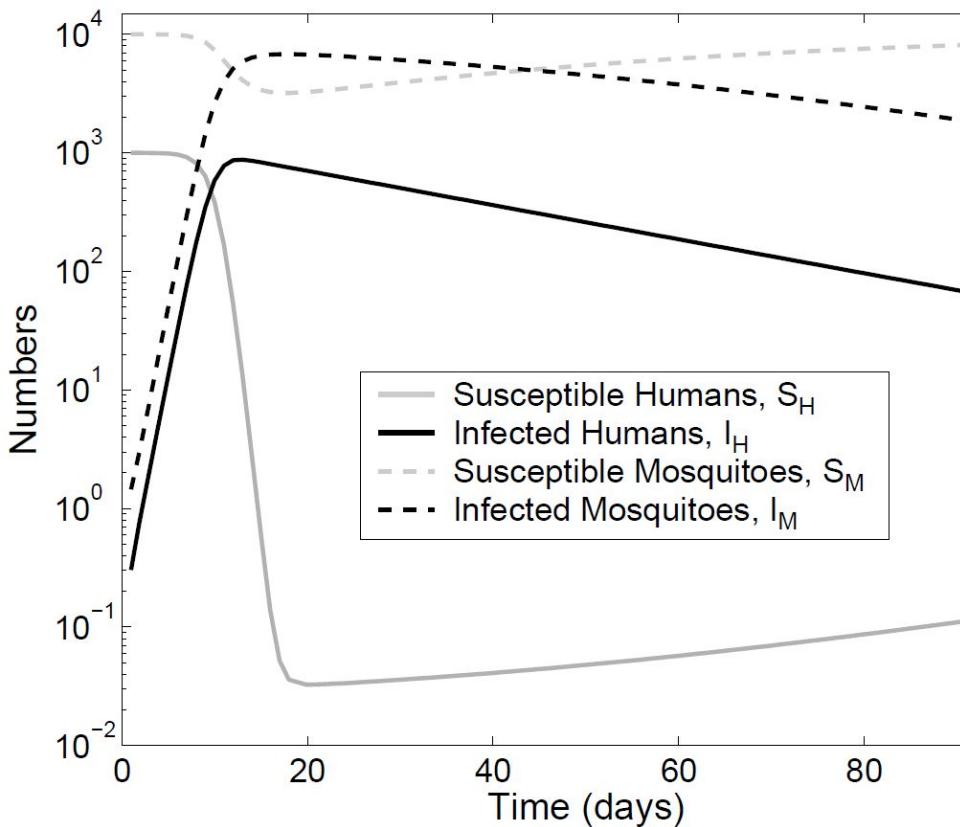
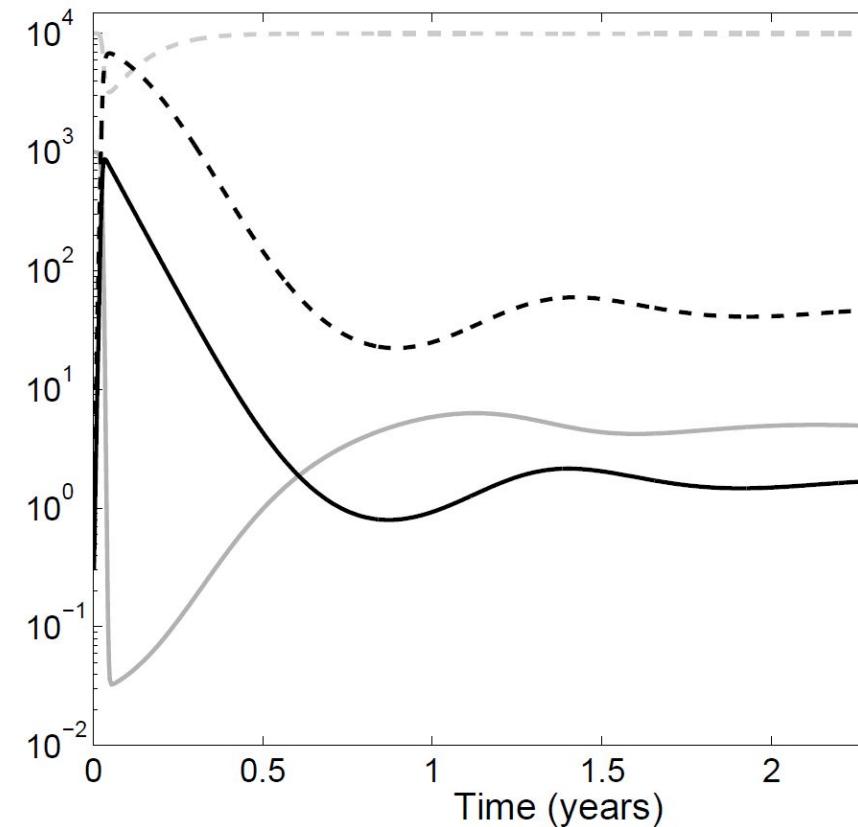
$$\dot{I}_H = r T_{HM} I_M S_H - \gamma_H I_H$$

$$\dot{S}_M = -r T_{MH} I_H S_M$$

$$\dot{I}_M = r T_{MH} S_H I_M$$

T_{HM} : transmission probability
mosquito \rightarrow human

T_{MH} : transmission probability
human \rightarrow mosquito



4. Bonus: Jacobians and SIR with natural dynamics

Small perturbations in systems of DEs

Linear system

$$\begin{aligned}\dot{x} &= ax + by \\ \dot{y} &= cx + dy\end{aligned}\right\} \xrightarrow{\text{rewrite}} \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \underbrace{\begin{pmatrix} a & b \\ c & d \end{pmatrix}}_{\substack{\text{Jacobian} \\ \text{matrix}}} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$J = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \text{Jacobian}$$

$$\text{"trace"} = \text{tr } J = a + d$$

$$\text{"determinant"} = \det J = ad - cb$$

IF $\text{tr } J < 0$ and $\det J \geq 0$,
the fixed point is stable

SIR with natural dynamics

μ : per capita rate of births and natural deaths

$$\left\{ \begin{array}{l} \dot{S} = \overset{\text{births}}{\mu N} - \beta S I - \mu S \\ \dot{I} = + \beta S I - \gamma I - \mu I \\ \dot{R} = + \gamma I - \mu R \end{array} \right. \quad \begin{array}{l} \text{natural} \\ \text{deaths} \end{array}$$

Endemic equilibrium:

$$(S^*, I^*, R^*) = \left(\frac{\gamma + \mu}{\beta}, \frac{\mu}{\beta} \left(\frac{\beta N}{\mu + \gamma} - 1 \right), N - I^* - S^* \right)$$

Requires

$$\frac{\beta N}{\gamma + \mu} = R_0 > 1$$

Stability of Endemic Equilibrium

Near endemic equilibrium, small perturbations $\delta S, \delta I$ are given to linear order by

$$\begin{pmatrix} \dot{\delta S} \\ \dot{\delta I} \end{pmatrix} = J \begin{pmatrix} \delta S \\ \delta I \end{pmatrix} \quad \text{where} \quad J = \begin{pmatrix} -\mu - \beta I^* & -\beta S^* \\ \beta I^* & -\gamma - \mu + \beta S^* \end{pmatrix} = 0$$

$$\Rightarrow \begin{cases} \text{tr } J = -(\mu + \beta I^*) < 0 \\ \det J = \beta^2 I^* S^* > 0 \end{cases}$$

\Rightarrow Endemic equilibrium is stable

Conclusion

For a given infection:

Can you write down a diagram for a compartmental model?

Can you write down the system of differential equations it?

Do you believe that maths can be a very useful tool in biology/medicine?

Questions?

FEEDBACK FORM + RESOURCES PAGE

Feedback Form: <https://forms.gle/nSh91uxifm8hynUJ6>

Resources Page:

www.mariaalegriagutierrez.wordpress.com/epi-talk-bio

Contact: mag84@cam.ac.uk

THANK YOU

Thank You