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Chapter 1:
Simple Epidemic Models



The Basics




Notation

X: number of susceptible individuals
Y: number of infectious individuals

Z: number of recovered individuals

N: total population size

S: fraction of susceptible individuals = X/N
I: fraction of infected individuals = Y/N

R: fraction of recovered individuals = Z/N




Frequency vs Density Dependent Transmission

[)’ (transmission rate): (contact rate) x (transmission probability)

A (fOI’CG of infection): per capita rate at which a susceptible individual
contracts the infection.

So new infectedes are produced at a rate AX.
Frequency dependent transmission: )\ — BY/N — BI

Density dependent transmission: X\ = Y




SIR (frequency dependent) + natural dynamics

Y. recovery rate (could include deaths from disease)

U. rate of natural births and deaths (constant population size)
X=uN-BXY/N—-puX | S=u—BSI—uS
Y=+4BXY/N —~Y —uY I =+B8SI— (y+ p)

Z =+4+~Y — uZ R=+~I — uR
X+Y+Z=N S+I+R=1




Basic Reproduction Number & Endemic Equilibrium

The Basic Reproduction Number is the number of secondary cases generated per
infected individual in an otherwise susceptible population (S=1).

Ry = % = (transmission rate) X (infectious period)

Endemic Equilibrium

(S*,I*, R*) = (L E(Ry—1),1—I* —R*)
requires

Ry >1

making the Endemic Equilibrium stable
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Parameter Estimation




Estimating R, from reported cases

In the early stages of an epidemic,

I(t) ~ I(0)exp ([Ro — 1](7y + p)t)

Mean Age at Infection (A)

Average period spent in the susceptible class is approximately the inverse of the
force of infection:

o1 1 4L

where L=1/u is the host’s life expectancy




Maximum Likelihood Estimator

Probability individual of age a is susceptible is P(a) ~ exp (—GM(RO o 1))

Data: n seronegative individuals of ages a7, a9, ..., a, and mseropositive
individuals of ages bl, bz’ e b,

Likelihood

L(Ry) = fx (x| Ro)
L(Ry) = [[;=; exp(—aip(Ro — 1)) [[;Z, [1 — exp(—bipu(Ro — 1))]

Choose the basic reproduction number to maximize the likelihood function (mle)




Chapter 2:
Host Heterogeneities



Continuous Vs Discrete
Heterogeneities




Age Structure - PDE model

asé(;:,t) uS(a, t) — 65(a t)
8I(a,t) 6I (a t)

Hard to estimate the transmission rate (continuous function of two variables)
Hard to get analytical results
In practice use numerical solutions

-> partition population into age groups.



Discrete version

Transmission matrix between different subgroups (eg, children and adults)

dS;
dt __Z Bijoid;
Z BiiSil; — vil;

(Here no natural dynamics)

Number of parameters quadratic in number of subgroups



Risk Structure




High & Low Risk Groups T AN
Transmission matrix between groups A R I ..
v :..‘ o %
B — Bur  BHL S, - I,
= |
= Bre  BLL .

Bam > Brr > Bor = Bru

Basic reproduction number:

e Found by eigenvalue approach
e Higher than without risk substructure



Random Partnership Model

Useful for STls: partition population according to number of sexual partners

ﬂ" o ,8 1] I; . mn;
vy S kny I 7y, kg

where n; :NZ/N,I: Zz Iz

Ry=1Y, 8,8 1L;/1 =22

M

is the expected number of secondary cases per primary case, where M, V are the
mean and variance of the number of sexual partners



Super-Shedders and Super-Spreaders

Super-shedder: an individual who once infected secretes large amounts of the

fB B
— ]_
Q fB B >

Super-spreader: an individual with a very high number of contacts.

(P8 fﬁ) 1
2 (fﬂ 5 )77

infectious agent




Chapter 3:
Temporally Forced

Models



Resonance

Take system to be SIR - B
(ignore natural deaths in X.Y: X = /'LN ’B(t)XY/N
everyone gets the disease) Y — ,B(t)XY/N —~Y

with time-dependent transmission rate: ,B(t) _ ,80(1 + (1 cos wt) |,31| <1
— )

Expand around fixed points:

X=X"(1+2),Y=Y"(1+y),lz|, |yl <1

To linear order in small quantities,

J + uRoy + puBoy = —Brwysinwt

e Small variations in transmission rate -> significant amplitude fluctuations
e Can have resonance if forcing at system’s natural frequency




Bifurcation Diagrams

Period-doubling cascade to chaos!
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Choice of forcing function also important



Chapter 4.
Stochastic Dynamics



Deterministic Attractor Added Stochasticity

Greater Stochasticity

Weaker Attractor

) ©



Event-Driven Approaches




Gillipsie’s First Reaction Method
1. Label all possible events By, By, ..., E,

2. For each event, determine the rate at which it occurs Ry, Ro,..., R,
Example (SIR):
a. Births occurs at rate uN, result is X -> X+1
b. Transmission occurs at rate SXY/N, result is X->X-1, Y->Y+1
C
d

Recovery occurs at rate Y, result is Y->Y-1, Z->Z+1

Deaths of A (where A=X, Y or Z) occur at a rate uA, result is A -> A-1
log RAND,,

For each event m, calculate the time until it next occurs 5tm — R,

Find the event p that happens first (has the smallest 6t) Use U(01) to
generate RAND

Perform event p and update the time

o o & W

Return to Step 2
D
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Probability of Extinction - Branching Process

Suppose that one infectious individual arrives at large totally susceptible
population.

Let P be the probability that the disease goes extinct before it causes a major

epidemic. P _ ~ | 3 P2 - Nﬁir\&
B+y Bty e, 5% -

= P = min{l1/Ry, 1} W;%“ Igeckon il irfeckiow,
Qo

Stochasticity can stop an epidemic (despite having basic reproductive ratio > 1)




Analytical Methods




Stochastic Differential Equations

% — F(z) + f(x)¢ £~ N(0,1)

For a general DE with additive “white noise”, the exact probability distribution P is
given by the Fokker-Plank Equation:

OP(x,
20 = — 2 (F(2)P(z,t)) + +-Z(f(2)* P(x, 1))
& — [BXY/N + /BXY]N& ] — WY + /7Y ]
& = BXY /N — Y + /BXY /N +7Y¢

dt
(the two mdependent normal random variables add their variances and means)




Fokker-Plank equation (continuation)

" =~y (BXY/N = yYIP(¥)) + 5 37= (BXY/N + 9Y]P(Y)

Equilibrium P*(Y) is given by RHS=0 so

OP(Y) [2[3XY—27YN—ﬂ(N—2Y)—|—’yN

o | P(Y)

where X=N-Y (for SIS)

-Can integrate (at least numerically)




/2()(”\3”‘43 /Qx_‘\;{

Master Equations: SIS dynamics (%) G- ®\/@<<\,®

G

PY: probability that Y individuals are infectious

Y) (N-Y+1)(Y—1)

,_ N-Y)Y
‘Z_}? = —PyvY — Pyﬁ( N T Pyyiy(Y +1) + Py f3 N

8Cst P 1 =0= Py

Equilibriumhas Py =0VY =0,1,...,N soflowfrom Y to Y+ is the same
as the flow from Y+1to Y

= P y(Y +1) = P:(B(N -Y)Y/N)st. Yy_, Ps =1

. oy (N-DU g\ Y
Py =B (N-Y)lY (vN)




Break!



Chapter b:
Spatial Models



Levins-Type Metapopulations

Each subpopulation is either infected or disease-free.

Global coupling: P is probability a subpopulation is infected, e is extinction rate (of
the disease in each subpopulation), p gives the coupling between subpopulations

dP
- = p(l — P)P —eP
General case:

dPp;
— =2 ;pij(1 — P;)P; — e; P,




Lattice-Based Models




Eg: ‘Forest-Fire’ Model simulation for SIRS dynamics

. to . at rate rn+e where n is the number of infected neighbours

. to . at rate y (recovery rate)
. to . at rate v (at which immunity wanes) 6 T

7. transmission rate between contacts
e. import rate into susceptible sites

Simulation! The MATLAB code for this simulation (and for many other models) is
here:

https://github.com/meryjoy99/mathematical_modelling_infectious_diseases



https://github.com/meryjoy99/mathematical_modelling_infectious_diseases

Continuous-Space Models
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Transient dynamics: travelling wave at the origin Y t, L,Y) — r—ct

If same diffusion, speed is
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Integro-Differential Equations

K(d) transmission kernel: how infectivity decreases with distance
dX(x,t)

dt — —)\(X, t)X(X7 t)
dy (x,t)
dt /\(X, t)X(X, t) o ’)/Y(X, t)

— B fY(Y7 t)K(X — Y)dzy (density dependent)

Basic Reproduction Ratio:

= B [p» N(x)K (x)d*z = 278N [,” K(r)rdr

for uniform population density



Individual-Based Models




An Example >\z — /BZjEinfectious K(d(’&, ]))

Force of infection to a susceptible individual i is where K is the transmission
kernel and d(i,j) is the distance between i and an infectious individual j.

Hard to parameterize
Computationally expensive (cubic order in population size)
Shortcuts: discrete time, discrete space

Simulation! The MATLAB code for this simulation (and for many other models) is
here:

https://github.com/meryjoy99/mathematical modelling infectious diseases



https://github.com/meryjoy99/mathematical_modelling_infectious_diseases

Networks




Random Networks

Ignores spatial position of individuals

Connections formed at random




Lattices
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Spatial Networks




Scale-Free Networks Small World Networks

o0 \‘\“%4] o

O
® o
X A\ 4‘1\"/,,,1\&\‘.
QVING 7 =,
NS A
N\ o2
‘éa; S .;%?/A/l/‘\;o
\—AA S
. X&<FT [ T BT TV
KN\ .“Qv/ o 7 Ay Z A\
SN S G

e SOPRI%
A é.i{;»",‘/, .\‘\‘fo/,;-'x“;l»,ﬂ;‘{" ’ \\
D&Y "‘ >
7 AN S~
1 w‘%}rw-‘
0\\0
@)

@)
O
@)
©)

O
© )



Pair-Wise Models for Networks




Notation
For AB,C € {XY,Z}

[AB]Z Number of pairs in the network with an individual in class A connected to

another individual in class B.

[ABC]Z Number of triples in the network with an individual in A connected to

someone in B connected to somebody else in C.

7 transmission probability: between infected-susceptible contacts

Rate of new infection=7[ Y X]




irfackion
SIS Pair-Wise Equations il m
X =Y - T[YX] racay
d[XY] — -
i = 7Y XX] +4YY] — 7Y X| — 7Y XY]| — 4| XY]
ABC| ~ (n—1) [AB][BC] Y=N-X

B XX] = nX — [XY]

where n is the average number of contacts of each individual.



SOI thion SIS pairwise approximation
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4000 A
— [XY] pairs A
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Python code obtain to obtain numerical solutions + graphics at github repository:
https://github.com/meryjoy99/mathematical_modelling_infectious_diseases
D



https://github.com/meryjoy99/mathematical_modelling_infectious_diseases

Chapter 6:
Controlling Infectious

Diseases



Pulsed Vaccination




Model

p: fraction of susceptibles that get vaccinated

T. time gap between vaccinations

L = p— BSI—pS—p>2y S(nT~)é(t — nT)
d

—tzﬁSI—'yI—uI




Optimal time gap (Shulgin et al. 1998)

(uT—p)(e*" —1)+ppT <L =
uT(p—1+etT) Ry |3

Vaccination fraction, py



Age-Structured Vaccination




Model

A: age of vaccination p: vaccination fraction
dS(a,t) ~ 65 (a,t)
- = —BS(a,t)I(t) — pS(a,t) — —
i = BS(a, )1 (1) — ul(a,1) — yI(a,t) - TGO
t) = [y I(a,t)da  §(0,) = u, I(0,t) =0

S(A ) ) (1_ )S(A_at)
I(A™,t) = I(A", 1)



Equilibrium
0= 2 = §(a) = pexp (—(BI +u)ﬁ) fora < A
u(l—p)exp(—(BI + p)a) fora> A

r o O0I(a,
0:%: ) étt)da_ (B[, S(a,t)da — v — p)

1—pexp (—(B] +p)A) _ Btp

Total number of infecteds, 1*, minimised when A=0



Questions?



Feedback form: hitps://forms.gle/CZj4TJXgazohsaPES8

Resources: www.mariaaleqgriaqgutierrez.wordpress.com/epi-talk-2

Including:

e Links to code and figures
e Slides for this talk (and the previous one)
e Recommended papers, books, courses, etc

Figures: http://homepages.warwick.ac.uk/~masfz/ModelingInfectiousDiseases/index.html

Contact: mag84@cam.ac.uk

THANK YOU!
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http://homepages.warwick.ac.uk/~masfz/ModelingInfectiousDiseases/index.html

