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Chapter 1: 
Simple Epidemic Models



The Basics



Notation

X: number of susceptible individuals

Y: number of infectious individuals

Z: number of recovered individuals

N: total population size

S: fraction of susceptible individuals = X/N

I: fraction of infected individuals = Y/N

R: fraction of recovered individuals = Z/N



Frequency vs Density Dependent Transmission

𝛽 (transmission rate): (contact rate) x (transmission probability) 

λ (force of infection): per capita rate at which a susceptible individual 
contracts the infection.

So new infectedes are produced at a rate λX. 

Frequency dependent transmission: 

Density dependent transmission:



SIR (frequency dependent) + natural dynamics 

𝛾: recovery rate (could include deaths from disease)

𝜇: rate of natural births and deaths (constant population size)



Basic Reproduction Number & Endemic Equilibrium

The Basic Reproduction Number is the number of secondary cases generated per 
infected individual in an otherwise susceptible population (S=1).

Endemic Equilibrium

requires 

making the Endemic Equilibrium stable



Oscillations
Jacobian has complex eigenvalues

Phase space diagram



Parameter Estimation



Estimating        from reported cases

In the early stages of an epidemic,

so could use this to fit the reported data.

Mean Age at Infection (A)

Average period spent in the susceptible class is approximately the inverse of the 
force of infection:  

where L=1/𝜇 is the host’s life expectancy



Maximum Likelihood Estimator

Probability individual of age a is susceptible is

Data: n seronegative individuals of ages and m seropositive 
individuals of ages

Likelihood

Choose the basic reproduction number to maximize the likelihood function (mle)   



Chapter 2:
Host Heterogeneities



Continuous Vs Discrete 
Heterogeneities



Age Structure - PDE model

Hard to estimate the transmission rate (continuous function of two variables)

Hard to get analytical results

In practice use numerical solutions 

-> partition population into age groups.



Discrete version 

Transmission matrix between different subgroups (eg, children and adults)

(Here no natural dynamics)

Number of parameters quadratic in number of subgroups



Risk Structure



High & Low Risk Groups

Transmission matrix between groups

Basic reproduction number:

● Found by eigenvalue approach
● Higher than without risk substructure



Random Partnership Model

Useful for STIs: partition population according to number of sexual partners

where

is the expected number of secondary cases per primary case, where M, V are the 
mean and variance of the number of sexual partners



Super-Shedders and Super-Spreaders

Super-shedder: an individual who once infected secretes large amounts of the 
infectious agent

Super-spreader: an individual with a very high number of contacts.



Chapter 3:
Temporally Forced 
Models



Resonance
Take system to be SIR 
(ignore natural deaths in X,Y:  
everyone gets the disease)

with time-dependent transmission rate:

Expand around fixed points: 

To linear order in small quantities,

● Small variations in transmission rate -> significant amplitude fluctuations
● Can have resonance if forcing at system’s natural frequency



Bifurcation Diagrams

Period-doubling cascade to chaos!

Choice of forcing function also important

 



Chapter 4:
Stochastic Dynamics





Event-Driven Approaches



Gillipsie’s First Reaction Method
1. Label all possible events 

2. For each event, determine the rate at which it occurs    
Example (SIR):

a. Births occurs at rate 𝜇N, result is X -> X+1
b. Transmission occurs at rate 𝛽XY/N, result is X->X-1, Y->Y+1
c. Recovery occurs at rate 𝛾Y, result is Y->Y-1, Z->Z+1
d. Deaths of A (where A=X, Y or Z) occur at a rate 𝜇A, result is A -> A-1

3. For each event m, calculate the time until it next occurs 

4. Find the event p that happens first (has the smallest 𝛿t)

5. Perform event p and update the time

6. Return to Step 2

Use U(0,1) to 
generate RAND





Probability of Extinction - Branching Process

Suppose that one infectious individual arrives at large totally susceptible 
population. 

Let P be the probability that the disease goes extinct before it causes a major 
epidemic.

Stochasticity can stop an epidemic (despite having basic reproductive ratio > 1)



Analytical Methods



Stochastic Differential Equations

For a general DE with additive “white noise”,  the exact probability distribution P is 
given by the Fokker-Plank Equation:

(the two independent normal random variables add their variances and means)



Fokker-Plank equation (continuation)

Equilibrium P*(Y) is given by RHS=0 so

where X=N-Y (for SIS)

-Can integrate (at least numerically)



Master Equations: SIS dynamics

: probability that Y individuals are infectious

BCs:

Equilibrium has so flow from Y to Y+1 is the same 
as the flow from Y+1 to Y

 



Break!



Chapter 5:
Spatial Models



Levins-Type Metapopulations

Each subpopulation is either infected or disease-free.

Global coupling: P is probability a subpopulation is infected, e is extinction rate (of 
the disease in each subpopulation), ⍴ gives the coupling between subpopulations

General case: 



Lattice-Based Models



Eg: ‘Forest-Fire’ Model simulation for SIRS dynamics

to at rate  𝜏n+𝜀 where n is the number of infected neighbours

to at rate 𝛾 (recovery rate)

to at rate 𝜈 (at which immunity wanes)

𝜏: transmission rate between contacts

𝜀: import rate into susceptible sites

Simulation! The MATLAB code for this simulation (and for many other models) is 
here:

https://github.com/meryjoy99/mathematical_modelling_infectious_diseases
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https://github.com/meryjoy99/mathematical_modelling_infectious_diseases


Continuous-Space Models



Reaction-Diffusion Equation

Transient dynamics: travelling wave at the origin

If same diffusion, speed is



Integro-Differential Equations

K(d) transmission kernel: how infectivity decreases with distance 

 (density dependent)

Basic Reproduction Ratio:

for uniform population density



Individual-Based Models



An Example

Force of infection to a susceptible individual i is where K is the transmission 
kernel and d(i,j) is the distance between i and an infectious individual j.

Hard to parameterize

Computationally expensive (cubic order in population size)

Shortcuts: discrete time, discrete space

Simulation! The MATLAB code for this simulation (and for many other models) is 
here:

https://github.com/meryjoy99/mathematical_modelling_infectious_diseases

https://github.com/meryjoy99/mathematical_modelling_infectious_diseases


Networks



Random Networks

Ignores spatial position of individuals

Connections formed at random



Lattices  Spatial Networks



Scale-Free Networks Small World Networks



Pair-Wise Models for Networks



Notation

For A,B,C ∈ {X,Y,Z}

[AB]: Number of pairs in the network with an individual in class A connected to 

another individual in class B.

[ABC]: Number of triples in the network with an individual in A connected to 

someone in B connected to somebody else in C.

𝜏 transmission probability: between infected-susceptible contacts

Rate of new infection= 𝜏[YX] 



SIS Pair-Wise Equations

where n is the average number of contacts of each individual.



Solution

Python code obtain to obtain numerical solutions + graphics at github repository: 
https://github.com/meryjoy99/mathematical_modelling_infectious_diseases

https://github.com/meryjoy99/mathematical_modelling_infectious_diseases


Chapter 6:
Controlling Infectious 
Diseases



Pulsed Vaccination



Model

p: fraction of susceptibles that get vaccinated

T: time gap between vaccinations



Optimal time gap (Shulgin et al. 1998) 



Age-Structured Vaccination



Model

A: age of vaccination p: vaccination fraction



Equilibrium

Total number of infecteds,  Î* , minimised when A=0 



Questions?



Feedback form: https://forms.gle/CZj4TJXqazohsaPE8

Resources: www.mariaalegriagutierrez.wordpress.com/epi-talk-2
Including:

● Links to code and figures
● Slides for this talk  (and the previous one)
● Recommended papers, books, courses, etc

Figures: http://homepages.warwick.ac.uk/~masfz/ModelingInfectiousDiseases/index.html

Contact: mag84@cam.ac.uk

THANK YOU!

https://forms.gle/CZj4TJXqazohsaPE8
http://www.mariaalegriagutierrez.wordpress.com/epi-talk-2
http://homepages.warwick.ac.uk/~masfz/ModelingInfectiousDiseases/index.html

