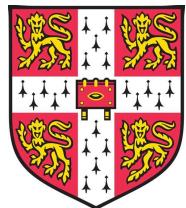


Modelling **vaccine escape**: ecology and evolution

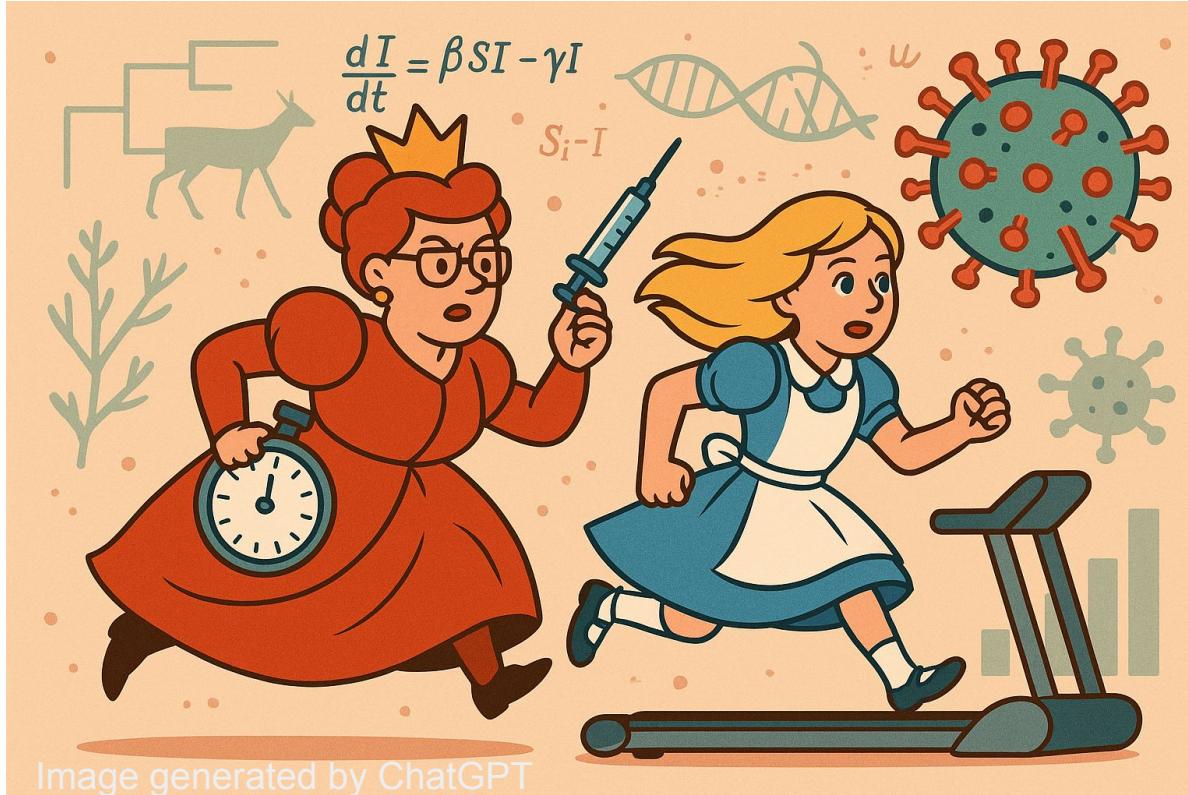
Maria A. Gutierrez

University of Cambridge

Soon postdoc with P. Rohani (UGA)

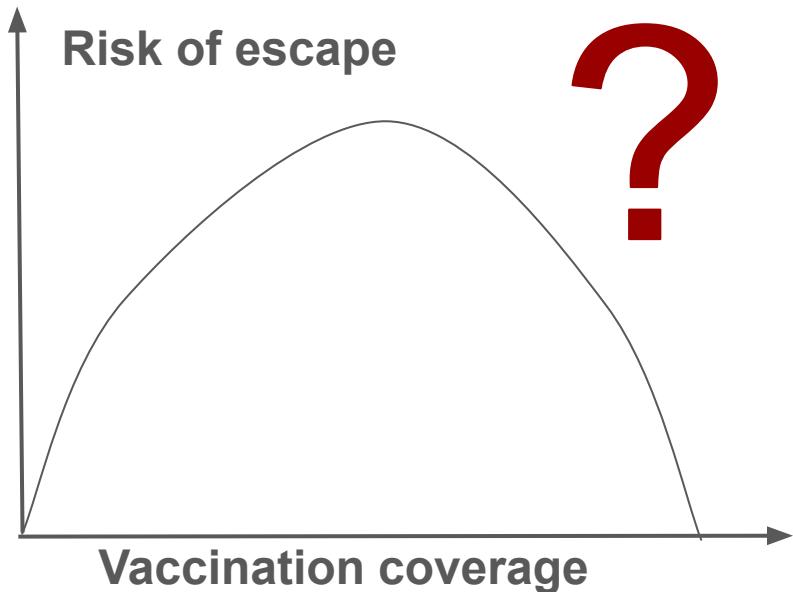


“Now, here, you see, it takes all the running you can do, just to keep in the same place.”



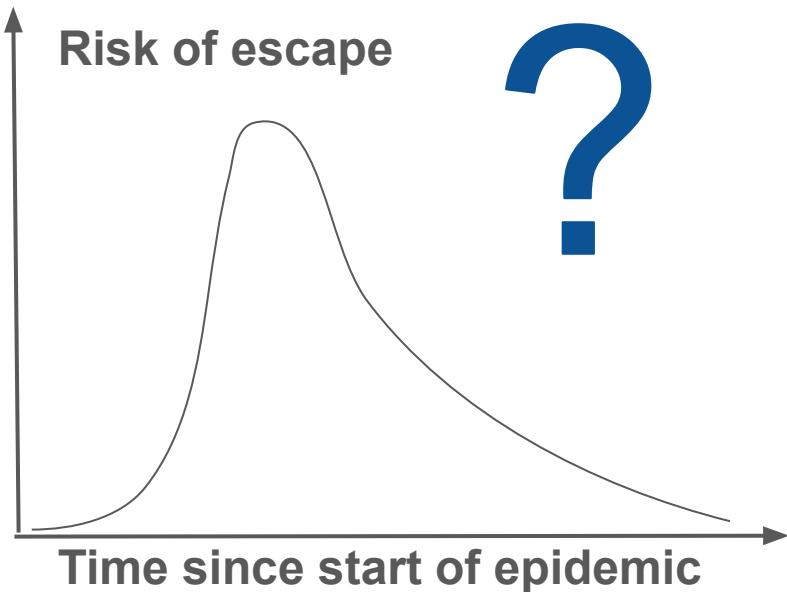
Red Queen
to Alice in
*Through the
Looking Glass*
(Lewis Carroll)

Question #1:



Do intermediate vaccination coverages always maximise the risk of escape?

Question #2:



Does the highest escape risk occur when the prevalence is at its peak?

Outline

1. Generation of escape strains

J. Theoretical Biology,

2023, Gutierrez and Gog

2. Establishment of escape strains

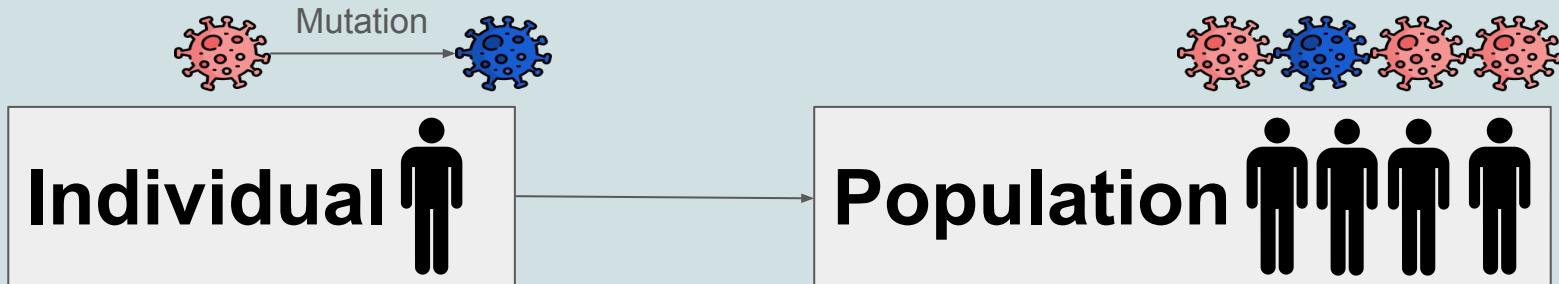
Submitted in PhD thesis,
manuscript in preparation

Epidemic/impact of escape strains

Not in today's talk,
but ask me about it



Simplified scales of selection for the *appearance* of strains



$$P(t) \propto (I_U(t) + \theta_E I_V(t))$$

Immune escape pressure

infections in
unvaccinated hosts

infections in
vaccinated hosts

Relative selection
in vaccinated hosts

Within-host selection by vaccination status

$$P(t) \propto (I_U(t) + \theta_E I_V(t))$$

$\theta_E > 1$?

If infected, **who is more likely to generate an escape strain?**
Vaccinated or unvaccinated?



Grenfell et al, *Science* 2004

Transient SIR epidemic wave

$$\dot{S}_U = -S_U \lambda$$

$$\dot{S}_V = -S_V \lambda$$

$$\dot{I}_U = S_U \lambda - I_U$$

$$\dot{I}_V = S_V \lambda - I_V$$

$$\lambda = R_0(I_U + \theta_I I_V) \quad \text{reduced transmissibility}$$

$$S_U(0) = 1 - c$$

$$S_V(0) = c\theta_S$$

all-or-none protection
against infection

vaccination coverage c :
vaccines given before outbreak,
permanent partial immunity
against infection θ_S and transmission θ_I

Analytical final-size solution leads to escape pressure

Integrated escape pressure

$$P = \int_0^\infty (I_U + \theta_E I_V) dt = C_U + \theta_E C_V$$

Cumulative final-sizes

...similar to standard SIR final-size

$$P = (1 - c(1 - \theta_S \theta_E))(1 + R_e^{-1} W(-R_e e^{-R_e}))$$

Initial effective R-number

Lambert W function

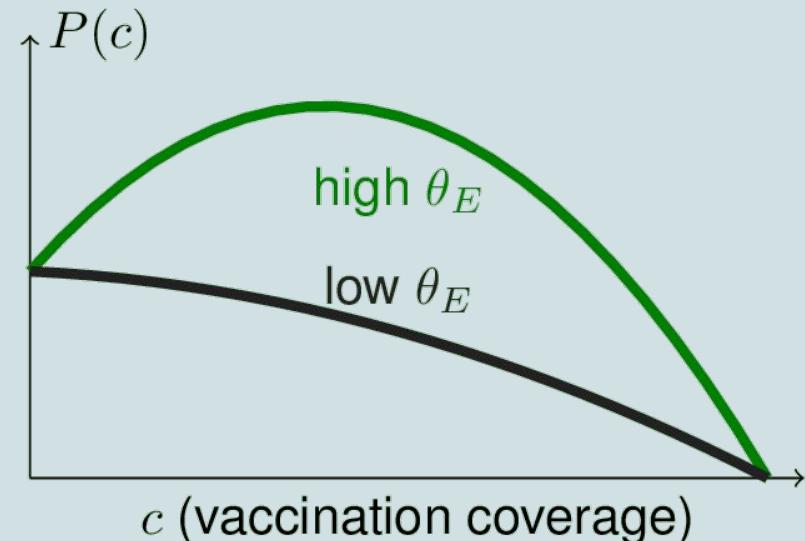
$$R_e = R_0(1 - c(1 - \theta_S \theta_I))$$

Escape pressure P as a function of vaccination coverage c

$$P = C_U + \theta_E C_V$$

Behaviour of P depends on the relative escape contribution of vaccinees, θ_E

- **Unimodal** if θ_E above threshold
- Decreasing if θ_E below threshold



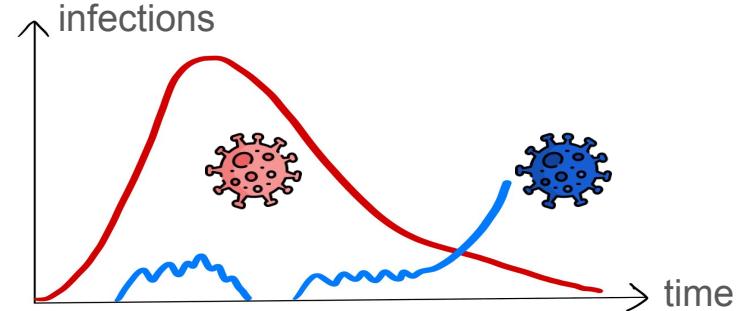
After an escape mutant appears, can it avoid extinction?

Stochastic dynamics for early mutant spread

Establishment probability $p(t)$ changes with time:
Few hosts remain susceptible late in the epidemic

Net escape pressure rate
for appearance and establishment

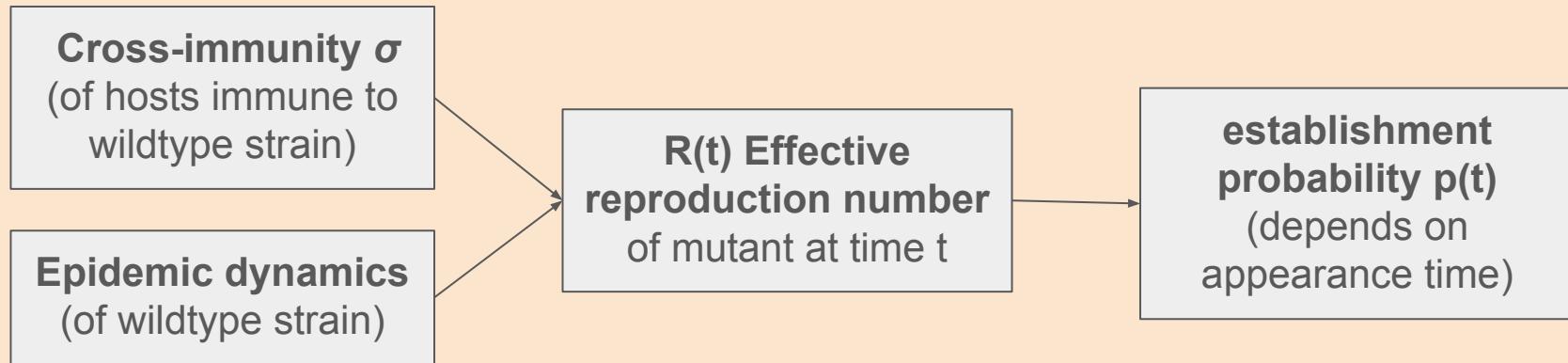
Mutant strain appears during **wildtype** epidemic



Establishment probability
for mutants that appear at time t

$$P(t) = (I_U(t) + \theta_E I_V(t)) p(t)$$

Cross-reactivity of immunity (from vaccines & WT infections)



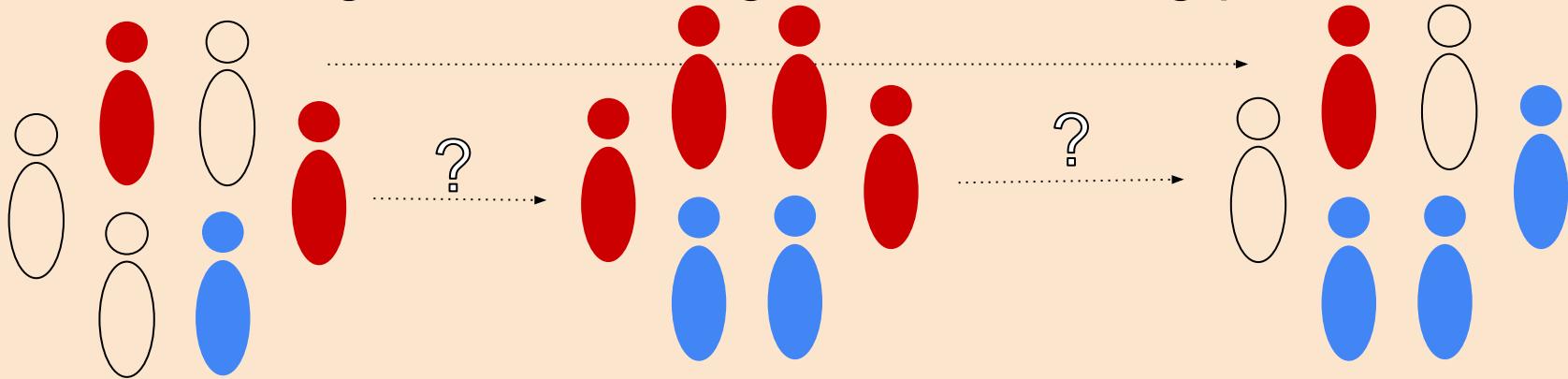
$$R(t) = R_0(S_U(t) + S_V(t) + (1 - \sigma)(R_U(t) + R_V(t) + (c - S_V(0))))$$

Below the equation, three orange arrows point to the terms in the parentheses:

- An arrow points to $S_U(t) + S_V(t)$ with the label: Fully susceptible to WT
- An arrow points to $R_U(t) + R_V(t)$ with the label: Fully immune to WT
- An arrow points to $(c - S_V(0))$ with the label: Full vaccine Immunity to WT

Below the equation, a box contains the text: **Cross-immunity reduces susceptibility**

Time-inhomogeneous emergence branching process



Susceptible depletion (from wildtype strain)

- traditional branching process (e.g., Whittle formula $p=1-1/R$) not valid
- a **time-dependent transmission rate $R(t)$** in “birth-death” process

$$\dot{p} = p(1 - (1 - p)R(t))$$

Kendall formula solves for $p(T)$

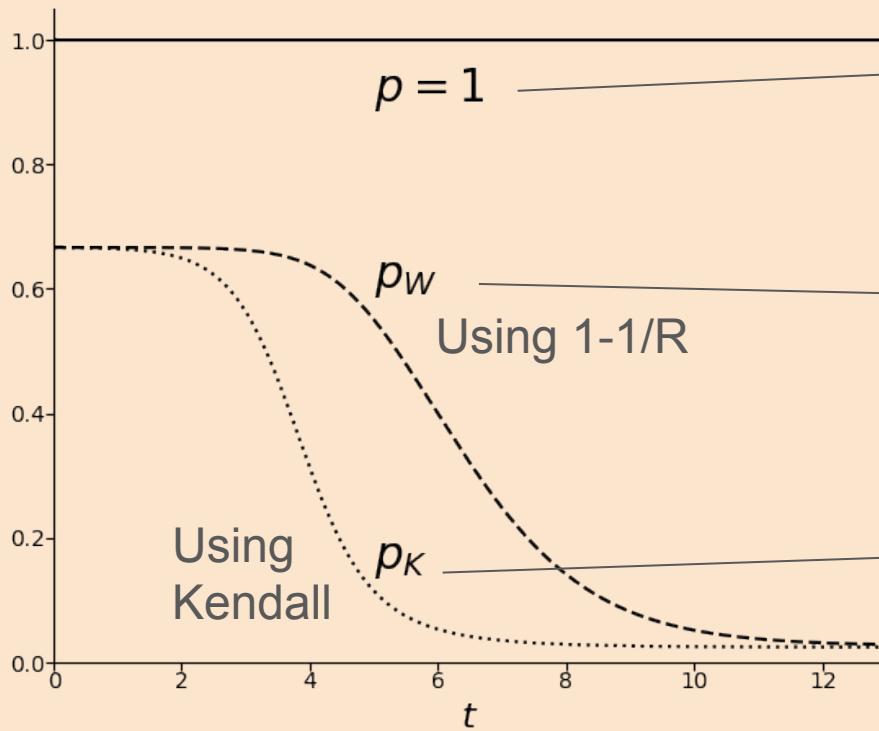
If $R(\infty) > 1$,

$$p(T) = \frac{1}{1 + \int_T^\infty \exp \left[- \int_T^{\tau'} (R(\tau) - 1) d\tau \right] d\tau'}$$

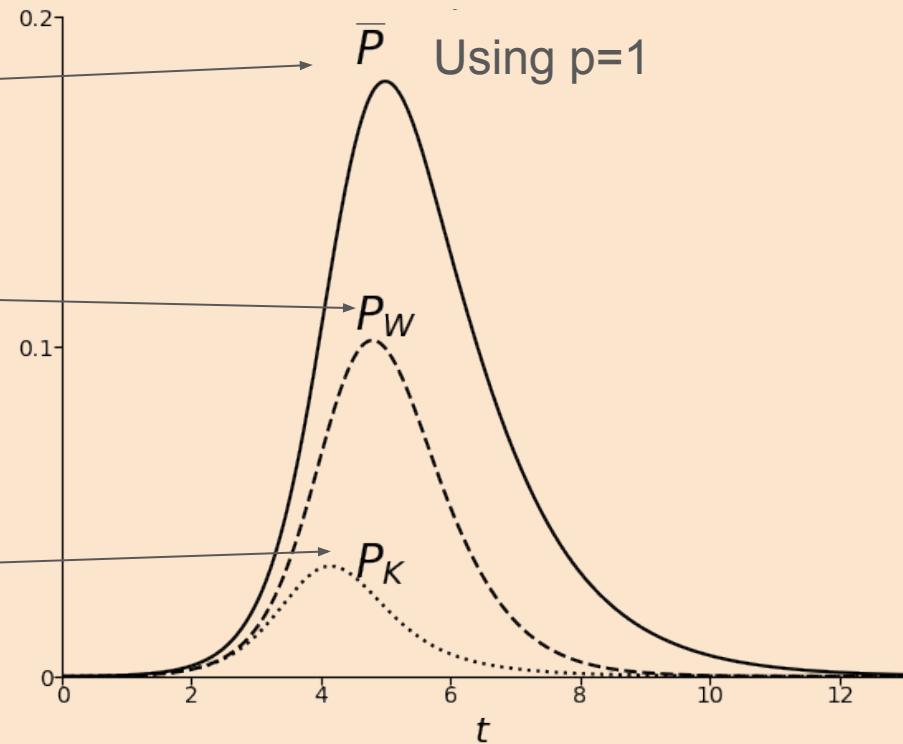
If $R(\infty) \leq 1$, $p(T) = 0$

Value of $R(t)$ after the mutant appears ($t > T$) is important!

Establishment probability



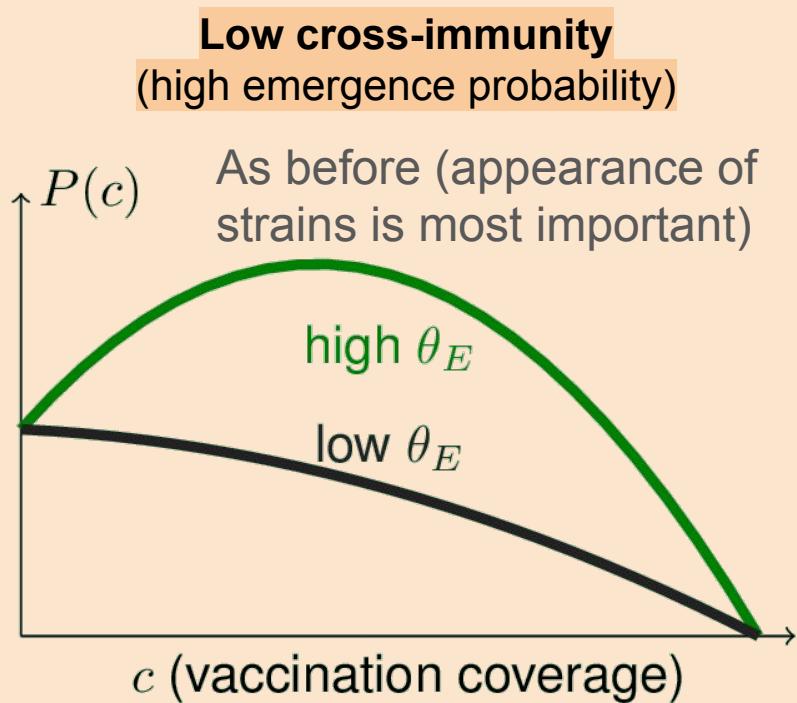
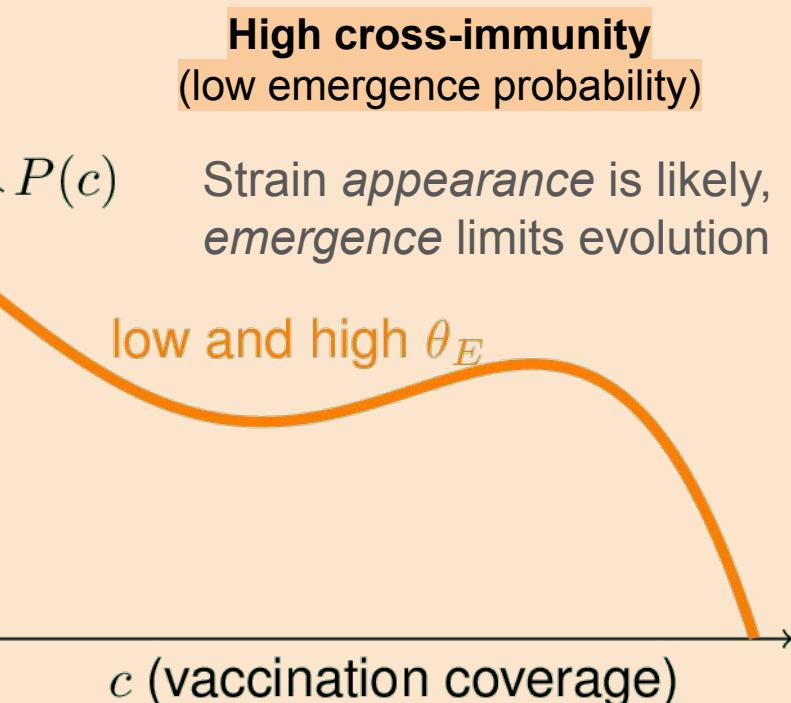
Net escape pressure rate



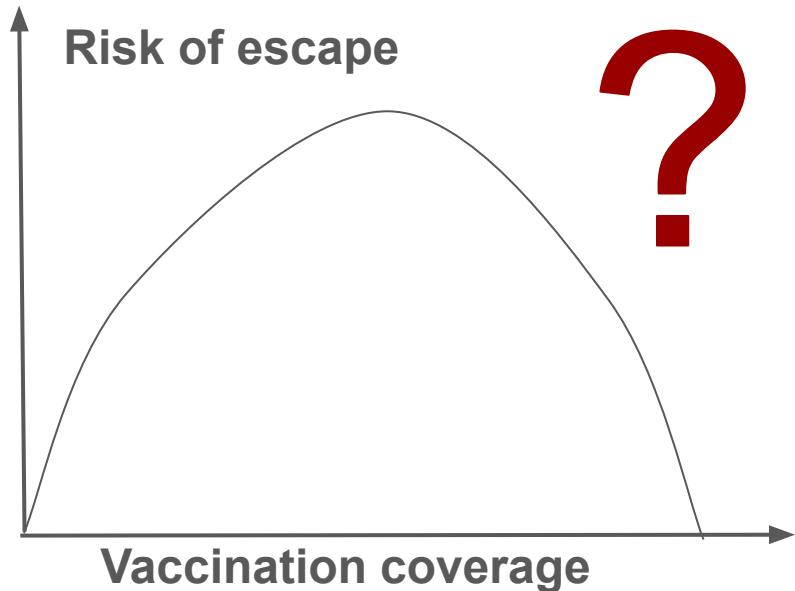
- Kendall formulation “foresees” the upcoming decreases in susceptibles.
- Maximum escape pressure is a bit earlier than the prevalence peak

High cross-immunity leads to new behaviours

The shape of the **cumulative escape pressure $P(c)$** depends on the **cross-immunity σ** between the wildtype and mutant strains.

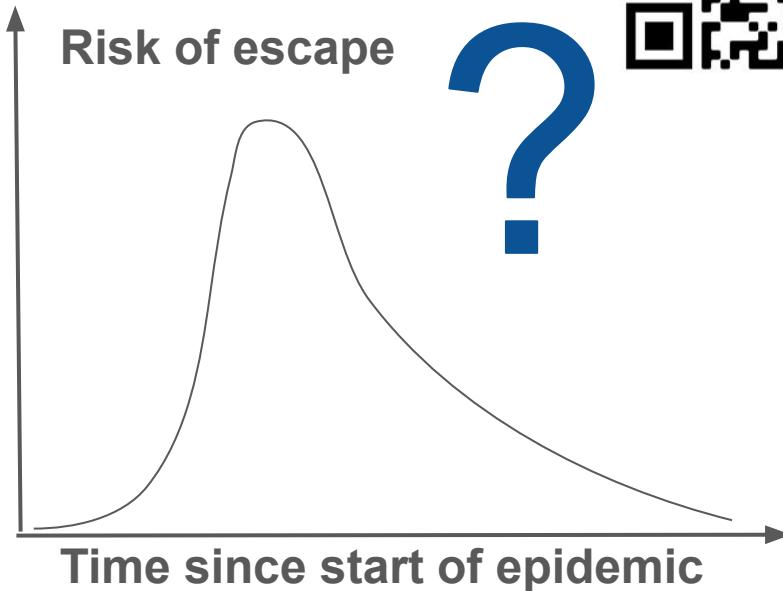


Question #1:



Intermediate vaccination coverages do not always maximise the risk of escape.

Question #2:



The peak escape pressure does not occur at the same time as the peak prevalence.

